Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Rep ; 14(1): 10096, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698014

RESUMEN

Pou6f2 is a genetic connection between central corneal thickness (CCT) in the mouse and a risk factor for developing primary open-angle glaucoma. POU6F2 is also a risk factor for several conditions in humans, including glaucoma, myopia, and dyslexia. Recent findings demonstrate that POU6F2-positive retinal ganglion cells (RGCs) comprise a number of RGC subtypes in the mouse, some of which also co-stain for Cdh6 and Hoxd10. These POU6F2-positive RGCs appear to be novel of ON-OFF directionally selective ganglion cells (ooDSGCs) that do not co-stain with CART or SATB2 (typical ooDSGCs markers). These POU6F2-positive cells are sensitive to damage caused by elevated intraocular pressure. In the DBA/2J mouse glaucoma model, heavily-labeled POU6F2 RGCs decrease by 73% at 8 months of age compared to only 22% loss of total RGCs (labeled with RBPMS). Additionally, Pou6f2-/- mice suffer a significant loss of acuity and spatial contrast sensitivity along with an 11.4% loss of total RGCs. In the rhesus macaque retina, POU6F2 labels the large parasol ganglion cells that form the magnocellular (M) pathway. The association of POU6F2 with the M-pathway may reveal in part its role in human glaucoma, myopia, and dyslexia.


Asunto(s)
Dislexia , Glaucoma , Miopía , Células Ganglionares de la Retina , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Animales , Ratones , Miopía/patología , Miopía/metabolismo , Miopía/genética , Glaucoma/patología , Glaucoma/metabolismo , Glaucoma/genética , Factores de Riesgo , Dislexia/genética , Dislexia/metabolismo , Dislexia/patología , Humanos , Modelos Animales de Enfermedad , Presión Intraocular , Ratones Endogámicos DBA , Ratones Noqueados
2.
Exp Eye Res ; 242: 109881, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554800

RESUMEN

The retinal ganglion cells (RGCs) serve as the critical pathway for transmitting visual information from the retina to the brain, yet they can be dramatically impacted by diseases such as glaucoma. When investigating disease processes affecting RGCs in mouse models, accurately quantifying affected cells becomes essential. However, the use of pan RGC markers like RBPMS or THY1 presents challenges in accurate total cell counting. While Brn3a serves as a reliable RGC nuclear marker for automated counting, it fails to encompass all RGC subtypes in mice. To address this limitation and enable precise automated counting, our research endeavors to develop a method for labeling nuclei in all RGC subtypes. Investigating RGC subtypes labeled with the nuclear marker POU6F2 revealed that numerous RGCs unlabeled by Brn3a were, in fact, labeled with POU6F2. We hypothesize that using antibodies against both Brn3a and POU6F2 would label virtually all RGC nuclei in the mouse retina. Our experiments confirmed that staining retinas with both markers resulted in the labeling of all RGCs. Additionally, when using the cell body marker RBPMS known to label all mouse RGCs, all RBPMS-labeled cells also exhibited Brn3a or POU6F2 labeling. This combination of Brn3a and POU6F2 antibodies provides a pan-RGC nuclear stain, facilitating accurate automated counting by labeling cell nuclei in the retina.


Asunto(s)
Núcleo Celular , Ratones Endogámicos C57BL , Células Ganglionares de la Retina , Factor de Transcripción Brn-3A , Animales , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Ratones , Recuento de Células , Núcleo Celular/metabolismo , Factor de Transcripción Brn-3A/metabolismo , Coloración y Etiquetado/métodos , Biomarcadores/metabolismo
3.
J Neurotrauma ; 38(20): 2896-2906, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34353120

RESUMEN

Pressure waves from explosions or other traumatic events can damage the neurons of the eye and visual centers of the brain, leading to functional loss of vision. There are currently few treatments for such injuries that can be deployed rapidly to mitigate damage. Brain-derived neurotrophic factor (BDNF) and activation of its receptor tropomycin-related kinase B (TrkB) have neuroprotective effects in a number of degeneration models. Small molecule activators of TrkB, such as N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC), cross the blood-brain and blood-retina barriers after systemic administration. We characterize the effects of blast-induced ocular trauma on retinal and visual function. We show that systemic administration of HIOC, a potent small molecule activator of the BDNF/TrkB receptor, preserves visual function in mice exposed to ocular blast injury. The HIOC treatment for one week preserves visual function for at least four months. The HIOC treatment effectively protected vision when the initial dose was administered up to 3 h after blast, but not if the initial treatment was delayed for 24 h. We provide evidence that the therapeutic effect of HIOC is mediated by activation of BDNF/TrkB receptors. The results indicate that HIOC may be useful for managing ocular blast injury and other forms of traumatic optic neuropathy.


Asunto(s)
Traumatismos por Explosión/complicaciones , Ceguera/tratamiento farmacológico , Ceguera/etiología , Lesiones Oculares/complicaciones , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/etiología , Receptor trkB/agonistas , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematorretinal/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuroprotección , Fármacos Neuroprotectores/farmacología , Retina/fisiopatología , Tiempo de Tratamiento , Resultado del Tratamiento
4.
Pharmaceutics ; 13(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208613

RESUMEN

Glaucoma etiology often includes retinal ganglion cell (RGC) death associated with elevated intraocular pressure (IOP). However, even when IOP is managed well, disease can progress. It is thus important to develop therapeutic approaches that directly protect RGCs in an IOP-independent manner. Compromised nicotinamide adenine dinucleotide (NAD+) metabolism occurs in neurodegenerative diseases, including models of glaucoma. Here we report testing the protective effects of prophylactically systemically administered nicotinamide riboside (NR), a NAD+ precursor, in a mouse model of acute RGC damage (optic nerve crush (ONC)), and in a chronic model of RGC degeneration (ocular hypertension induced by intracameral injection of microbeads). For both models, treatment enhanced RGC survival, assessed by counting cells in retinal flatmounts immunostained for Brn3a+. In the ONC model, treatment preserved RGC function, as assessed by pattern electroretinogram, and suppressed retinal inflammation, as assessed by immunofluorescence staining of retinal fixed sections for glial fibrillary acidic protein (GFAP). This is the first study to demonstrate that systemic treatment with NR is protective in acute and chronic models of RGC damage. The protection is significant and, considering that NR is highly bioavailable in and well-tolerated by humans, may support the proposition of prospective human subject studies.

5.
Exp Eye Res ; 207: 108571, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33844961

RESUMEN

Glaucoma is a collection of diseases that lead to an irreversible vision loss due to damage of retinal ganglion cells (RGCs). Although the underlying events leading to RGC death are not fully understood, recent research efforts are beginning to define the genetic changes that play a critical role in the initiation and progression of glaucomatous injury and RGC death. Several genetic and experimental animal models have been developed to mimic glaucomatous neurodegeneration. These models differ in many respects but all result in the loss of RGCs. Assessing transcriptional changes across different models could provide a more complete perspective on the molecular drivers of RGC degeneration. For the past several decades, changes in the retinal transcriptome during neurodegeneration process were defined using microarray methods, RNA sequencing and now single cell RNA sequencing. It is understood that these methods have strengths and weaknesses due to technical differences and variations in the analytical tools used. In this review, we focus on the use of transcriptome-wide expression profiling of the changes occurring as RGCs are lost across different glaucoma models. Commonalities of optic nerve crush and glaucoma-induced neurodegeneration are identified and discussed.


Asunto(s)
Modelos Animales de Enfermedad , Glaucoma/patología , Degeneración Nerviosa/patología , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Transcriptoma/genética , Animales , Proteínas del Ojo/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Glaucoma/genética , Ratones , Traumatismos del Nervio Óptico/genética , Análisis de Secuencia de ARN , Transducción de Señal/fisiología , Regulación hacia Arriba
6.
Front Bioeng Biotechnol ; 9: 596154, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634081

RESUMEN

The biomechanical properties of the cornea and sclera are important in the onset and progression of multiple ocular pathologies and vary substantially between individuals, yet the source of this variation remains unknown. Here we identify genes putatively regulating corneoscleral biomechanical tissue properties by conducting high-fidelity ocular compliance measurements across the BXD recombinant inbred mouse set and performing quantitative trait analysis. We find seven cis-eQTLs and non-synonymous SNPs associating with ocular compliance, and show by RT-qPCR and immunolabeling that only two of the candidate genes, Smarce1 and Tns4, showed significant expression in corneal and scleral tissues. Both have mechanistic potential to influence the development and/or regulation of tissue material properties. This work motivates further study of Smarce1 and Tns4 for their role(s) in ocular pathology involving the corneoscleral envelope as well as the development of novel mouse models of ocular pathophysiology, such as myopia and glaucoma.

7.
Mol Vis ; 26: 173-187, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180682

RESUMEN

We illustrate the growing power of the BXD family of mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice) and companion bioinformatic tools to study complex genome-phenome relations related to glaucoma. Over the past 16 years, our group has integrated powerful murine resources and web-accessible tools to identify networks modulating visual system traits-from photoreceptors to the visual cortex. Recent studies focused on retinal ganglion cells and glaucoma risk factors, including intraocular pressure (IOP), central corneal thickness (CCT), and susceptibility of cellular stress. The BXD family was exploited to define key gene variants and then establish linkage to glaucoma in human cohorts. The power of this experimental approach to precision medicine is highlighted by recent studies that defined cadherin 11 (Cdh11) and a calcium channel (Cacna2d1) as genes modulating IOP, Pou6f2 as a genetic link between CCT and retinal ganglion cell (RGC) death, and Aldh7a1 as a gene that modulates the susceptibility of RGCs to death after elevated IOP. The role of three of these gene variants in glaucoma is discussed, along with the pathways activated in the disease process.


Asunto(s)
Canales de Calcio/metabolismo , Córnea/metabolismo , Glaucoma/metabolismo , Presión Intraocular/genética , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Canales de Calcio/genética , Muerte Celular/genética , Córnea/crecimiento & desarrollo , Córnea/patología , Modelos Animales de Enfermedad , Glaucoma/genética , Humanos , Presión Intraocular/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo
8.
Mol Vis ; 25: 345-358, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354228

RESUMEN

Purpose: The goal of the present study is to provide an independent assessment of the retinal transcriptome signatures of C57BL/6J (B6) and DBA/2J (D2) mice, and to enhance existing microarray data sets for accurately defining the allelic differences in the BXD recombinant inbred strains. Methods: Retinas from B6 and D2 mice (three of each) were used for the RNA sequencing (RNA-seq) analysis. Transcriptome features were examined for both strains. Differentially expressed genes between the two strains were identified, and bioinformatic analysis was performed to analyze the transcriptome differences between the B6 and D2 strains, including Gene Ontology (GO) analysis, Phenotype and Reactome enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The RNA-seq data were then directly compared with one of the microarray data sets (Department of Defense [DoD] Retina Normal Affy MoGene 2.0 ST RMA Gene Level Microarray Database) hosted on GeneNetwork. Results: RNA-seq provided an in-depth analysis of the transcriptome of the B6 and D2 retinas with a total of more than 30,000,000 reads per sample. More than 70% of the reads were uniquely mapped, resulting in a total of 18,100 gene counts for all six samples. A total of 1,665 genes were differentially expressed, with 858 of these more highly expressed in the B6 retinas and 807 more highly expressed in the D2 retinas. Several molecular pathways were differentially active between the two strains, including the retinoic acid metabolic process, endoplasmic reticulum lumen, extracellular matrix (ECM) organization, and the PI3K-Akt signaling pathway. The most enriched KEGG pathways were the pentose and glucuronate interconversions pathway, the cytochrome P450 pathway, the protein digestion and absorption pathway, and the ECM-receptor interaction pathway. Each of these pathways had a more than fourfold enrichment. The DoD Normal Retina Microarray Database provided expression profiling for 26,191 annotated transcripts for B6 mouse, D2 mouse, and 53 BXD strains. A total of 13,793 genes in this microarray data set were comparable to the RNA-seq data set. For the B6 and D2 retinas, the RNA-seq data and the microarray data were highly correlated with each other (Pearson's r=0.780 for the B6 mice and 0.784 for D2 mice). These results suggest that the microarray data set can reliably detect differentially expressed genes between the B6 and D2 retinas, with an overall accuracy of 91.1%. Examples of true positive and false positive genes are provided. Conclusions: Retinal transcriptome features of B6 and D2 mouse strains provide a useful reference for a better understanding of the mouse retina. Generally, the microarray database presented on GeneNetwork shows good agreement with the RNA-seq data, but we note that any allelic difference between B6 and D2 mice should be verified with the latter.


Asunto(s)
Redes Reguladoras de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos , Retina/metabolismo , Análisis de Secuencia de ARN , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Transcriptoma/genética
9.
Adv Exp Med Biol ; 1074: 413-420, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721971

RESUMEN

Transcription and RNA processing can generate many variant mRNAs (isoforms) from a given genomic locus. The more we learn about RNA processing the more we realize how complex it can be. Examining the expression profiles of individual exons, we observed that specific exons were differentially expressed across a large number of genes in mice. We found that each isoform or exon is independently expressed compared to other exons from the same gene and regulated separately in trans. Each trans locus was identified by mapping using linkage analysis in a large mouse recombinant inbred strain set. We present evidence for a limited number of these master regulatory loci in the retina. One major locus controls about half the expression of the individual exons and resides on Chromosome 4, between 133 and 136 Mb.


Asunto(s)
Empalme Alternativo/genética , Exones/genética , Proteínas del Ojo/genética , Regulación de la Expresión Génica/genética , Familia de Multigenes/genética , Animales , Mapeo Cromosómico , Presentación de Datos , Bases de Datos Genéticas , Proteínas del Ojo/biosíntesis , Ligamiento Genético , Ratones , Ratones Endogámicos , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Transcriptoma
10.
G3 (Bethesda) ; 8(5): 1571-1578, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29496776

RESUMEN

Intraocular pressure (IOP) is the primary risk factor for developing glaucoma, yet little is known about the contribution of genomic background to IOP regulation. The present study leverages an array of systems genetics tools to study genomic factors modulating normal IOP in the mouse. The BXD recombinant inbred (RI) strain set was used to identify genomic loci modulating IOP. We measured the IOP in a total of 506 eyes from 38 different strains. Strain averages were subjected to conventional quantitative trait analysis by means of composite interval mapping. Candidate genes were defined, and immunohistochemistry and quantitative PCR (qPCR) were used for validation. Of the 38 BXD strains examined the mean IOP ranged from a low of 13.2mmHg to a high of 17.1mmHg. The means for each strain were used to calculate a genome wide interval map. One significant quantitative trait locus (QTL) was found on Chr.8 (96 to 103 Mb). Within this 7 Mb region only 4 annotated genes were found: Gm15679, Cdh8, Cdh11 and Gm8730 Only two genes (Cdh8 and Cdh11) were candidates for modulating IOP based on the presence of non-synonymous SNPs. Further examination using SIFT (Sorting Intolerant From Tolerant) analysis revealed that the SNPs in Cdh8 (Cadherin 8) were predicted to not change protein function; while the SNPs in Cdh11 (Cadherin 11) would not be tolerated, affecting protein function. Furthermore, immunohistochemistry demonstrated that CDH11 is expressed in the trabecular meshwork of the mouse. We have examined the genomic regulation of IOP in the BXD RI strain set and found one significant QTL on Chr. 8. Within this QTL, there is one good candidate gene, Cdh11.


Asunto(s)
Sitios Genéticos , Presión Intraocular/genética , Animales , Cadherinas/metabolismo , Mapeo Cromosómico , Cromosomas de los Mamíferos/genética , Ojo/metabolismo , Genoma , Ratones Endogámicos C57BL , Ratones Endogámicos
11.
Mol Vis ; 24: 174-186, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29463955

RESUMEN

Purpose: The present study is designed to identify the influences of genetic background on optic nerve regeneration using the two parental strains (C57BL/6J and DBA/2J) and seven BXD recombinant inbred mouse strains. Methods: To study regeneration in the optic nerve, Pten was knocked down in the retinal ganglion cells using adenoassociated virus (AAV) delivery of shRNA, and a mild inflammatory response was induced with an intravitreal injection of zymosan with CPT-cAMP. The axons of the retinal ganglion cells were damaged by optic nerve crush (ONC). Following a 12-day survival period, regenerating axons were labeled by cholera toxin B, and 2 days later, the regenerating axons within the optic nerve were examined. The number of axons at 0.5 mm and 1 mm from the crush site were counted. In addition, we measured the distance that five axons had grown down the nerve and the longest distance a single axon reached. Results: The analysis revealed a considerable amount of differential axonal regeneration across the seven BXD strains and the parental strains. There was a statistically significant difference (p=0.014 Mann-Whitney U test) in the regenerative capacity in the number of axons reaching 0.5 mm from a low of 236.1±24.4 axons in the BXD102 mice to a high of 759.8±79.2 axons in the BXD29 mice. There were also statistically significant differences (p=0.014 Mann-Whitney U test) in the distance axons traveled. Looking at a minimum of five axons, the shortest distance was 787.2±46.5 µm in the BXD102 mice, and the maximum distance was 2025.5±223.3 µm in the BXD29 mice. Conclusions: Differences in genetic background can have a profound effect on axonal regeneration causing a threefold increase in the number of regenerating axons at 0.5 mm from the crush site and a 2.5-fold increase in the distance traveled by at least five axons in the damaged optic nerve.


Asunto(s)
Axones/metabolismo , Antecedentes Genéticos , Regeneración Nerviosa/genética , Nervio Óptico/metabolismo , Fosfohidrolasa PTEN/genética , Animales , Axones/ultraestructura , Toxina del Cólera/química , Cruzamientos Genéticos , AMP Cíclico/administración & dosificación , AMP Cíclico/análogos & derivados , Dependovirus/genética , Dependovirus/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Compresión Nerviosa/métodos , Nervio Óptico/patología , Fosfohidrolasa PTEN/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Tionucleótidos/administración & dosificación , Zimosan/administración & dosificación
12.
Mol Vis ; 24: 115-126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29430167

RESUMEN

Purpose: Usher syndrome (US) is characterized by a loss of vision due to retinitis pigmentosa (RP) and deafness. US has three clinical subtypes, but even within each subtype, the severity varies. Myosin VIIA, coded by Myo7a, has been identified as one of the causal genes of US. This study aims to identify pathways and other genes through which Myo7a interacts to affect the presentation of US symptoms. Methods: In this study, we used the retinal tissue of BXD recombinant inbred (RI) mice to examine the expression of Myo7a and perform genetic mapping. Expression quantitative trait locus (eQTL), single nucleotide polymorphism (SNP), and gene correlation analysis were performed using GeneNetwork. Gene set enrichment analysis was performed using WebGestalt, and gene network construction was performed using the Gene Cohesion Analysis Tool. Results: We found Myo7a to be cis-regulated, with varied levels of expression across BXD strains. Here, we propose a genetic network with 40 genes whose expression is highly correlated with Myo7a. Among these genes, six have been linked to retinal diseases, three to deafness, and five share a transcription factor with Myo7a. Gene ontology and pathway analysis revealed a strong connection among ion channel activity, Myo7a, and US. Conclusions: Although Myo7a is a causal gene of US type I, this gene works with many other genes and pathways to affect the severity of US. Many of the genes found in the genetic network, pathways, and gene ontology categories of Myo7a are related to either deafness or blindness. Further investigation is needed to examine the specific relationships between these genes, which may assist in the treatment of US.


Asunto(s)
Redes Reguladoras de Genes , Miosinas/genética , Sitios de Carácter Cuantitativo , Factores de Transcripción/genética , Síndromes de Usher/genética , Animales , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Anotación de Secuencia Molecular , Miosina VIIa , Miosinas/metabolismo , Polimorfismo de Nucleótido Simple , Transducción de Señal , Factores de Transcripción/metabolismo , Síndromes de Usher/metabolismo , Síndromes de Usher/patología
13.
Exp Eye Res ; 169: 61-67, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29421330

RESUMEN

The present study was designed to identify genomic loci modulating the susceptibility of retinal ganglion cells (RGC) to elevated intraocular pressure (IOP) in the BXD recombinant inbred mouse strain set. IOP was elevated by injecting magnetic microspheres into the anterior chamber and blocking the trabecular meshwork using a handheld magnet to impede drainage. The IOP was then measured over the next 21 days. Only animals with IOP greater than 25 mmHg for two consecutive days or an IOP above 30 mmHg on a single day after microsphere-injection were used in this study. On day 21, mice were sacrificed and the optic nerve was processed for histology. Axons were counted for both the injected and the control eye in 49 BXD strains, totaling 181 normal counts and 191 counts associated with elevated IOP. The axon loss for each strain was calculated and the data were entered into genenetwork.org. The average number of normal axons in the optic nerve across all strains was 54,788 ±â€¯16% (SD), which dropped to 49,545 ±â€¯20% in animals with artificially elevated IOP. Interval mapping demonstrated a relatively similar genome-wide map for both conditions with a suggestive Quantitative Trait Locus (QTL) on proximal Chromosome 3. When the relative axon loss was used to generate a genome-wide interval map, we identified one significant QTL (p < 0.05) on Chromosome 18 between 53.6 and 57 Mb. Within this region, the best candidate gene for modulating axon loss was Aldh7a1. Immunohistochemistry demonstrated ALDH7A1 expression in mouse RGCs. ALDH7A1 variants were not significantly associated with glaucoma in the NEIGHBORHOOD GWAS dataset, but this enzyme was identified as part of the butanoate pathway previously associated with glaucoma risk. Our results suggest that genomic background influences susceptibility to RGC degeneration and death in an inducible glaucoma model.


Asunto(s)
Apoptosis/genética , Modelos Animales de Enfermedad , Sitios Genéticos , Genoma , Presión Intraocular/genética , Hipertensión Ocular/complicaciones , Células Ganglionares de la Retina/patología , Aldehído Deshidrogenasa/genética , Animales , Axones/patología , Estudio de Asociación del Genoma Completo , Ratones , Ratones Endogámicos , Microesferas , Enfermedades del Nervio Óptico/complicaciones , Malla Trabecular/efectos de los fármacos , Malla Trabecular/patología
14.
PLoS Genet ; 14(1): e1007145, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29370175

RESUMEN

Central corneal thickness (CCT) is one of the most heritable ocular traits and it is also a phenotypic risk factor for primary open angle glaucoma (POAG). The present study uses the BXD Recombinant Inbred (RI) strains to identify novel quantitative trait loci (QTLs) modulating CCT in the mouse with the potential of identifying a molecular link between CCT and risk of developing POAG. The BXD RI strain set was used to define mammalian genomic loci modulating CCT, with a total of 818 corneas measured from 61 BXD RI strains (between 60-100 days of age). The mice were anesthetized and the eyes were positioned in front of the lens of the Phoenix Micron IV Image-Guided OCT system or the Bioptigen OCT system. CCT data for each strain was averaged and used to QTLs modulating this phenotype using the bioinformatics tools on GeneNetwork (www.genenetwork.org). The candidate genes and genomic loci identified in the mouse were then directly compared with the summary data from a human POAG genome wide association study (NEIGHBORHOOD) to determine if any genomic elements modulating mouse CCT are also risk factors for POAG.This analysis revealed one significant QTL on Chr 13 and a suggestive QTL on Chr 7. The significant locus on Chr 13 (13 to 19 Mb) was examined further to define candidate genes modulating this eye phenotype. For the Chr 13 QTL in the mouse, only one gene in the region (Pou6f2) contained nonsynonymous SNPs. Of these five nonsynonymous SNPs in Pou6f2, two resulted in changes in the amino acid proline which could result in altered secondary structure affecting protein function. The 7 Mb region under the mouse Chr 13 peak distributes over 2 chromosomes in the human: Chr 1 and Chr 7. These genomic loci were examined in the NEIGHBORHOOD database to determine if they are potential risk factors for human glaucoma identified using meta-data from human GWAS. The top 50 hits all resided within one gene (POU6F2), with the highest significance level of p = 10-6 for SNP rs76319873. POU6F2 is found in retinal ganglion cells and in corneal limbal stem cells. To test the effect of POU6F2 on CCT we examined the corneas of a Pou6f2-null mice and the corneas were thinner than those of wild-type littermates. In addition, these POU6F2 RGCs die early in the DBA/2J model of glaucoma than most RGCs. Using a mouse genetic reference panel, we identified a transcription factor, Pou6f2, that modulates CCT in the mouse. POU6F2 is also found in a subset of retinal ganglion cells and these RGCs are sensitive to injury.


Asunto(s)
Córnea/anatomía & histología , Sitios Genéticos , Glaucoma/genética , Factores del Dominio POU/genética , Animales , Apoptosis/genética , Células Cultivadas , Mapeo Cromosómico , Córnea/patología , Paquimetría Corneal , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glaucoma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Polimorfismo de Nucleótido Simple , Embarazo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/fisiología , Factores de Riesgo
15.
Front Genet ; 9: 633, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619460

RESUMEN

Purpose: The present study examines the role of Sox11 in the initial response of retinal ganglion cells (RGCs) to axon damage and in optic nerve regeneration in mouse. Methods: Markers of retinal injury were identified using the normal retina database and optic nerve crush (ONC) database on GeneNetwork2 (www.genenetwork.org). One gene, Sox11, was highly upregulated following ONC. We examined the role of this transcription factor, Sox11, following ONC and optic nerve regeneration in mice. In situ hybridization was performed using the Affymetrix 2-plex Quantigene View RNA In Situ Hybridization Tissue Assay System. Sox11 was partially knocked out by intravitreal injection of AAV2-CMV-Cre-GFP in Sox11 f/f mice. Optic nerve regeneration model used Pten knockdown. Mice were perfused and the retinas and optic nerves were dissected and examined for RGC survival and axon growth. Results: Sox11 was dramatically upregulated in the retina following ONC injury. The level of Sox11 message increased by approximately eightfold 2 days after ONC. In situ hybridization demonstrated low-level Sox11 message in RGCs and cells in the inner nuclear layer in the normal retina as well as a profound increase in Sox11 message within the ganglion cells following ONC. In Sox11 f/f retinas, partially knocking out Sox11 significantly increased RGC survival after ONC as compared to the AAV2-CMV-GFP control group; however, it had little effect on the ability of axon regeneration. Combinatorial downregulation of both Sox11 and Pten resulted in a significant increase in RGC survival as compared to Pten knockdown only. When Pten was knocked down there was a remarkable increase in the number and the length of regenerating axons. Partially knocking out Sox11 in combination with Pten deletion resulted in a fewer regenerating axons. Conclusion: Taken together, these data demonstrate that Sox11 is involved in the initial response of the retina to injury, playing a role in the early attempts of axon regeneration and neuronal survival. Downregulation of Sox11 aids in RGC survival following injury of optic nerve axons, while a partial knockout of Sox11 negates the axon regeneration stimulated by Pten knockdown.

16.
J Neurotrauma ; 35(1): 118-129, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28599600

RESUMEN

Ocular blast injury is a major medical concern for soldiers and explosion victims due to poor visual outcomes. To define the changes in gene expression following a blast injury to the eye, we examined retinal ribonucleic acid (RNA) expression in 54 mouse strains 5 days after a single 50-psi overpressure air wave blast injury. We observe that almost 40% of genes are differentially expressed with a false discovery rate (FDR) of <0.001, even though the nominal changes in RNA expression are rather small. Moreover, we find through machine learning approaches that genetic networks related to the innate and acquired immune system are activated. Accompanied by lymphocyte invasion into the inner retina, blast injury also results in progressive loss of visual function and retinal ganglion cells (RGCs). Collectively, these data demonstrate how systems genetics can be used to put meaning to the transcriptome changes following ocular blast injury that eventually lead to blindness.


Asunto(s)
Traumatismos por Explosión/genética , Traumatismos por Explosión/inmunología , Lesiones Oculares/patología , Retina/patología , Transcripción Genética , Animales , Traumatismos por Explosión/patología , Lesiones Oculares/inmunología , Expresión Génica/inmunología , Redes Reguladoras de Genes/inmunología , Ratones , Retina/inmunología , Transcripción Genética/inmunología
17.
Front Mol Neurosci ; 10: 354, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209164

RESUMEN

In both the central nervous system (CNS) and the peripheral nervous system (PNS), axonal injury induces changes in neuronal gene expression. In the PNS, a relatively well-characterized alteration in transcriptional activation is known to promote axonal regeneration. This transcriptional cascade includes the neurotrophin Bdnf and the transcription factor Sox11. Although both molecules act to facilitate successful axon regeneration in the PNS, this process does not occur in the CNS. The present study examines the differential expression of Sox11 and Bdnf mRNA isoforms in the PNS and CNS using three experimental paradigms at different time points: (i) the acutely injured CNS (retina after optic nerve crush) and PNS (dorsal root ganglion after sciatic nerve crush), (ii) a CNS regeneration model (retina after optic nerve crush and induced regeneration); and (iii) the retina during a chronic form of central neurodegeneration (the DBA/2J glaucoma model). We find an initial increase of Sox11 in both PNS and CNS after injury; however, the expression of Bdnf isoforms is higher in the PNS relative to the CNS. Sustained upregulation of Sox11 is seen in the injured retina following regeneration treatment, while the expression of two Bdnf mRNA isoforms is suppressed. Furthermore, two isoforms of Sox11 with different 3'UTR lengths are present in the retina, and the long isoform is specifically upregulated in later stages of glaucoma. These results provide insight into the molecular cascades active during axonal injury and regeneration in mammalian neurons.

18.
Front Genet ; 7: 169, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27733864

RESUMEN

Retinal ganglion cells (RGCs) are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin) were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs) being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma.

19.
Mol Vis ; 21: 1235-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26604663

RESUMEN

PURPOSE: Differences in gene expression provide diverse retina phenotypes and may also contribute to susceptibility to injury and disease. The present study defines the transcriptome of the retina in the BXD RI strain set, using the Affymetrix Mouse Gene 2.0 ST array to investigate all exons of traditional protein coding genes, non-coding RNAs, and microRNAs. These data are presented in a highly interactive database on the GeneNetwork website. METHODS: In the Normal Retina Database, the mRNA levels of the transcriptome from retinas was quantified using the Affymetrix Mouse Gene 2.0 ST array. This database consists of data from male and female mice. The data set includes a total of 52 BXD RI strains, the parental strains (C57BL/6J and DBA/2J), and a reciprocal cross. RESULTS: In combination with GeneNetwork, the Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Normal Retina Database provides a large resource for mapping, graphing, analyzing, and testing complex genetic networks. Protein-coding and non-coding RNAs can be used to map quantitative trait loci (QTLs) that contribute to expression differences among the BXD strains and to establish links between classical ocular phenotypes associated with differences in the genomic sequence. Using this resource, we extracted transcriptome signatures for retinal cells and defined genetic networks associated with the maintenance of the normal retina. Furthermore, we examined differentially expressed exons within a single gene. CONCLUSIONS: The high level of variation in mRNA levels found among the BXD RI strains makes it possible to identify expression networks that underline differences in retina structure and function. Ultimately, we will use this database to define changes that occur following blast injury to the retina.


Asunto(s)
Redes Reguladoras de Genes , Genoma , Sitios de Carácter Cuantitativo , ARN Mensajero/genética , Retina/metabolismo , Transcriptoma , Animales , Cruzamientos Genéticos , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
20.
Prog Mol Biol Transl Sci ; 134: 365-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26310165

RESUMEN

Well defined animal models facilitate the study of ocular diseases. Each model brings a unique perspective to the understanding of the disease process, and in some cases, the models are critical to the development of therapeutic approaches for treatments. This is especially the case for glaucoma. Glaucoma is a family of diseases that can be caused by very different biological processes. The one thing in common is the end result, the loss of retinal ganglion cells and blindness. In this review, we will attempt to relate the findings from a number of animal models to specific types of glaucoma, emphasizing the contributions that each of the models makes to our overall understanding of the complex collection of diseases we call glaucoma.


Asunto(s)
Modelos Animales de Enfermedad , Glaucoma/patología , Animales , Muerte Celular , Redes Reguladoras de Genes , Glaucoma/genética , Glaucoma/inmunología , Humanos , Inmunidad Innata , Células Ganglionares de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...